Pax6 interacts with SPARC and TGF-β in murine eyes
نویسندگان
چکیده
PURPOSE To understand the mechanism of the function of paired box 6 (Pax6), a master regulator of eye development and functions, Pax6-interacting proteins were studied. It is presumed that the interaction of Pax6 with proteins in terms of morphogenesis and the maintenance of the functional anatomy of the eyes cannot be ignored. The interaction of Pax6 with matricellular protein and transforming growth factors (TGFs) is explored and presented in this report. METHODS Co-localization was studied through fluorescence microscopy. The physical interaction of Pax6 interacting proteins was explored through co-immunoprecipitation assay of samples from murine eyes. RESULTS It was interesting to observe the co-localization and physical interaction of Pax6, transforming growth factor-beta (TGF-β), and secreted protein acidic and rich in cysteine (SPARC) in murine eyes. CONCLUSIONS The interaction of Pax6, TGF-β, and SPARC in murine eyes indicates that Pax6 function is regulated through TGF-β, and SPARC influences the shuttling of Pax6 via the TGF-β/Smad signaling pathway.
منابع مشابه
Assay of Tgf-β And B-Fgf on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells in Wound Healing in a Murine Model
Purpose: Effects of TGF-b and b-FGF on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells In Wound Healing in a Murine Model.Materials and Methods: Peripheral blood mesenchymal stem cells (PBMSCs) and bone marrow stem cells (BMSCs) cultured in media with transforming growth factor-beta (TGF-b) and basic fibroblast growth factor (b-FGF). Stem cells labeled with...
متن کاملSecreted protein acidic and rich in cysteine (SPARC) is upregulated by transforming growth factor (TGF)-β and is required for TGF-β-induced hydrogen peroxide production in fibroblasts
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a poorly understood progressive disease characterized by the recurrent damage of alveolar epithelial cells as well as inappropriate expansion and activation of fibroblasts resulting in pronounced extracellular matrix (ECM) deposition. Although recent studies have indicated the involvement of secreted protein acidic and rich in cysteine (SPARC), ...
متن کاملIn Silico Analysis of Pax6 Interacting Proteins Indicates Missing Molecular Links in Development of Brain and Associated Disease
The PAX6, a transcription factor, is essential for the morphogenesis of the eyes, brain, pituitary and pancreatic islets. In rodents, the loss of Pax6 function leads to central nervous system defects, anophthalmia, and nasal hypoplasia. The haplo-insufficiency of Pax6 causes microphthalmia, aggression and other behavioral abnormalities. It is also required in brain patterning and neuronal plast...
متن کاملSPARC promotes pericyte recruitment via inhibition of endoglin-dependent TGF-β1 activity
Pericytes migrate to nascent vessels and promote vessel stability. Recently, we reported that secreted protein acidic and rich in cysteine (SPARC)-deficient mice exhibited decreased pericyte-associated vessels in an orthotopic model of pancreatic cancer, suggesting that SPARC influences pericyte behavior. In this paper, we report that SPARC promotes pericyte migration by regulating the function...
متن کاملSPARC downregulation attenuates the profibrogenic response of hepatic stellate cells induced by TGF-β1 and PDGF.
Liver fibrosis is an active process that involves changes in cell-cell and cell-extracellular matrix (ECM) interaction. Secreted protein, acidic and rich in cysteine (SPARC) is an ECM protein with many biological functions that is overexpressed in cirrhotic livers and upregulated in activated hepatic stellate cells (aHSCs). We have recently shown that SPARC downregulation ameliorates liver fibr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2012